Nonlinear Processing of Large Scale Satellite Images via Unsupervised Clustering and Image Segmentation
نویسندگان
چکیده
– For large scale satellite images, it is evitable that images will be affected by various uncertain factors, especially those from atmosphere. To minimize the impact of atmosphere medium dispersing, image segmentation is an essential procedure. As one of the most critical means of image processing and data analysis approach, segmentation is to classify an image into parts that have a strong correlation with objects in order to reflect the actual information collected from the real world. The image segmentation by clustering basically refers to grouping similar data points into different clusters. In this article, an unsupervised clustering technology is proposed for processing large scale satellite images taken from remote celestial sites where none explicit teacher is introduced. As an effective approach, K-means clustering method requires that certain number of clusters for partitioning be specified and its distance metric be defined to quantify relative orientation of objects. Then image processing system forms clusters from input patterns. Diversified large scale image features are investigated using unsupervised methods. At the same time, to limit computational complexity for real time processing consideration, a simple study is also conducted where tristimulus values are selected to represent three-layer color space. Simulation results show that this approach is very successful for spatial image processing. Key-Words Large scale satellite image, K-means clustering, Image segmentation, Nonlinear processing.
منابع مشابه
Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل